Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments.

نویسندگان

  • I Wuddel
  • H J Apell
چکیده

A charge-pulse technique was designed to measure charge movements in the Na-transport mode of the Na,K-ATPase in membrane fragments adsorbed to a planar lipid bilayer with high time resolution. 1) Na+ transport was measured as a function of membrane potential, and 2) voltage-dependent extracellular ion binding and release were analyzed as a function of Na+ concentration and membrane potential. The results could be fitted and explained on the basis of a Post-Albers cycle by simulations with a mathematical model. The minimal reaction sequence explaining the electrogenicity of the pump consists of the following steps: (Na3)E1-P <--> P-E2(Na3) <--> P-E2(Na2) <--> P-E2(Na) <--> P-E2. The conformational change, E1 to E2, is electrogenic (beta 0 < or = 0.1) and the rate-limiting step of forward Na+ transport with a rate constant of 25 s-1 (T = 20 degrees C). The first ion release step, P-E2(Na3) <--> P-E2(Na2), is the major charge translocating process (delta 0 = 0.65). It is probably accompanied by a protein relaxation in which the access structure between aqueous phase and binding site reduces the dielectric distance. The release of the subsequent Na+ ions has a significantly lower dielectric coefficient (delta1 = delta 2 = 0.2). Compared with other partial reactions, the ion release rates are fast (1400 s-1, 700 s-1, and 4000 s-1). On the basis of these findings, a refined electrostatic model of the transport cycle is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrogenicity of Na,K- and H,K-ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment.

The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb upta...

متن کامل

Toward an understanding of ion transport through the Na,K-ATPase.

In the Na,K-ATPase the charge-translocating reaction steps were found to be binding of the third Na(+) ion to the cytoplasmic side and the release of all three Na(+) ions to the extracellular side as well as binding of the two K(+) ions on the extracellular side. The conformation transition E(1) --> E(2) was only of minor electrogenicity; all other reaction steps produced no significant charge ...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Maturation of the catalytic alpha-subunit of Na,K-ATPase during intracellular transport

The protease sensitivity of the catalytic alpha-subunit of Na,K-ATPase during intracellular transport along the exocytic pathway has been investigated in two amphibian epithelial cell lines. Controlled trypsinolysis followed by immunoprecipitation of cell homogenates or microsomal fractions from [35S]methionine pulse-chased A6 kidney cells revealed distinct cleavage patterns by SDS-PAGE. Shortl...

متن کامل

بررسی سلولی‌ تومور و مکان‌یابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1

Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 1995